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Continuum time limit and stationary states of the minority game
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We discuss in detail the derivation of stochastic differential equations for the continuum time limit of the
minority game. We show that all properties of the minority game can be understood by a careful theoretical
analysis of such equations. In particuléiy, we confirm that the stationary state properties are given by the
ground state configurations of a disordefedft) spin system(ii) we derive the full stationary state distribu-
tion, (iii) we characterize the dependence on initial conditions in the symmetric phasigy)awe clarify the
behavior of the system as a function of the learning rate. This leaves us with a complete and coherent picture
of the collective behavior of the minority game. Strikingly we find that the temperaturelike parameter, which
is introduced in the choice behaviorioflividual agents turns out to play the role, at ttwlectivelevel, of the
inverse of a thermodynamic temperature.
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I. INTRODUCTION Second, we characterize the fluctuations around the average
behavior. To do this, we explicitly solve the Fokker-Planck

Even under the most demanding definition, the minorityequation associated with the stochastic dynamics.
game (MG) [1,2] definitely qualifies as a complex system. The results we derive are the following.
The MG can be regarded as an Ising model for systems of (1) We derive the full probability distribution in the sta-
heterogeneous adaptive agents, which interact via a glob&Pnary state. Remarkably we find that the parameter that is
mechanism that entails competition for limited resource, adhtroduced as a temperature in the individual choice model
found, for instance, in biology and financial markets. In spiteturns out to play the role of the inverse of a global tempera-
of more than three years of intense research, its rich dynamfure. o )
cal behavior is still the subject of investigations; many varia- (2) For a>a. the distribution factorizes over the agents
tions of the basic MG are being proposed, each uncoverinyhereas in the symmetric phase<«.) agents play in a
new surprising regions of phase space. correlated way. In the Iatte_r case, the correlations contribute

Most importantly, Refs[3—7] have shown that much the- t0 the stochastic force acting on agents. We show how the
oretical insight can be gained on the behavior of this class oféPendence of global efficiency on individual temperature
models, using nonequilibrium statistical physics and statistifound in Ref.[8] arises as a consequence of these correla-
cal mechanics of disordered systems. The approach of Ref80ns. _
[3—6] rests on the assumption that, in a continuum time limit  (3) We extend the analytic approach of Réf3,4] to the
(CTL), the dynamics of the MG can be described by a set oft<ac phase and asymmetric initial conditions. The depen-
deterministicequations. From these, one derives a functiondence on the initial conditions in this phase, first noticed and
H that is minimized along all trajectories; hence, the stationdiscussed in Refs[3,4], has been more recently studied
ary state of the system corresponds to the ground state of quantitatively in Refs[9,7]. We clarify the origin of this
which can be computed exactly by statistical mechanic®€ehavior and derive analytic solutions in the lifiit-0.

techniques. This approach has been challenged in F88, (4) We show that the stronger the initial asymmetry in
which have proposedstochasticdynamics for the MG, thus agents’ evaluation of their strategies, the larger is the effi-
leading to some debate in the literatiife,11]. ciency and the more stable is the system against crowd ef-

In this paper, our aim is to analyze in detail the derivationfects[12].
of the CTL in order to clarify this issue. We show that a  (5) We derive the Hamiltonian of MGs with nonlinear
proper derivation of the CTL indeed reconciles the two ap-Payoffs.
proaches: the resulting dynamical equations—EHs)—(17) This leaves us with a coherent picture of the collective
below, which are our central result—are indestochasticas ~ Pehavior of the minority game, which is an important refer-
suggested in Ref¢8,9], but still the stationary state of the ence framework for the study of complex systems of hetero-
dynamics is described by the minima of the functidnas  geneous adaptive agents.
suggested in Ref§3,4]. We then confirm the analytic results
derjved previqusly. In few word;, our analysis follows Fwo II. THE MODEL
main steps: first, we characterize the average behavior of
agents by computing the frequency with which they play The dynamics of the MG is defined in terms of dynamical
their strategies. This step can be translated in the study of theariables Ug;(t) in discrete timet=0,1,.... These are
ground state properties of a soft spin disordered Hamiltoniarscores, propensities or “attraction$14], which each agent
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i=1,... N attaches to each of his possible choices which measure, respectively, global efficiency and
=1,... S Each agent takes a decisiefft) with predictability?
Generalizations of the model, where agents account for
eliVsi(® their market impac{3,4], where deterministic agents—so-
Pros;(t)=sj= ——, (D called producers—are preseii], or where agents are al-
>, elivsi® lowed not to play20—24, have been proposed. Rather than

dealing with the most generic model, which would depend
on too many parameters, we shall limit our discussion to the
plain MG. Furthermore, we shall specialize, in the second
part of the paper, to the cag&=2, which lends itself to a
simpler analytic treatment. The analysis carries through in
obvious ways to the more general cases discussed in Refs.
[4,5,3,24.

where I';>0 appears as an “individual inverse tempera-
ture.” The original MG corresponds tb;=« [1] and was
generalized later td';=I"<x [8].

The public information variablew(t) is given to all
agents; it belongs to the set of integers (1. ,P) and can
either be the binary encoding of the I&dtwinning choices
[1], or drawn at random from a uniform distributipb5]; we
stick to the latter case for sake of simplicityThe action 1. THE CONTINUUM TIME LIMIT

at{3 ; of each agent depends on its choipgt) and ony(t). Our approach, which follows that of Ref&,4], is based
The coefficientsag,;, called strategies, play the role of on two key observations.
quenched disorder: they are randomly drawn signs (1) The scalingo®~N, at fixed«, suggests that typically
(Proaf;==1}=1/2), independently for eachs, andu.  A(t)~ JN. Hence time increments @dg;(t) in Eqg. (3) are
On the basis of the outcome small (i.e., of orderyN/P~1/\N).
N (2) Characteristic times of the dynamics are proportional
2 (1) @ to P. Naively this is because agents need to “test” their
O strategies against aR values of u, which requires of the
order of P time steps. More precisely, one can reach this
each agent updates his scores according to conclusion by measuring relaxation or correlation times and
AD) verifying that they indeed grow linearly witP (see Ref.
w0 = [10]).
Usi(t+ D) =Usi(0 a5 P - ©® The second observation implies that one needs to study
) ) o the dynamics in the rescaled time=t/P. This makes our
The idea of this equation is that agents rewdlttd i(t+1)  approach differ from that of Ref8,9], where the time is not
>Ug(t)] those strategies that would have predictedrtlie  escaled.
nority sign—A(t)/|A(t)|. The MG was initially proposed |n order to study the dynamics fét,N>1 at fixeda, we
with a nonlinear dependence @qt), i.e., with a dynamics  gshall focus on a fixed small incremedtr such thatPdr
Ugi(t+1)=Ug;(t) —aVsgr A(t)]. This leads to qualita- —=,Ndr>1. This means that we take the continuum time
tively similar results. The extension of our theory to nonlin- |imit d7— 0 only afterthe thermodynamic limitN— . We

ear cases is dealt with in Appendix A. We shall not discusSocus only on the leading order iN. Furthermore, we shall
any longer the interpretation of the model, which is dis-also considef; finite and

cussed at length elsewhdg 17-19.
The sources of randomness are in the choiceg(of by rdr<1, (5)
nature and of;(t) by agents. These are fast fluctuating de-
grees of freedom. As a consequence al$g;(t) and hence which means that the limif; — o should be taken after the
the probability with which agents chosg(t) are subject to limit d7—0. The orders in which these limits are taken,
stochastic fluctuations. Our analysis will indeed focus on thegiven the agreement with numerical simulation results, does
characterization of the low-frequency fluctuationslaf; by ~ not really matter: as we shall see differences only enter in the
integrating out the high-frequency fluctuations @ft) and  finite size corrections. We shall come back later to these
si(t). This will become clearer in the next section. For theissues.
time being let it suffice to say that there are two levels of Iteration of the dynamics folPdr time steps, fromt
fluctuations, that of “fast” variableg:(t) ands;(t) and that =P7 tot=P(7+d7) gives
of “slow” degrees of freedomJg;(t).

The key parameter is the ratie= P/N [18] and the two P(r+dn)-1 ()
relevant quantities are Usi(7+d7)—Usi()=—5 t;T agi’A(t), (6
P
o?=(A%), H zé 2 (Al p)?, (4) where we have introduced the functions;(7)=Ug;(P7).

2Averages|- - -) stand for time averages in the stationary state of
1Both prescriptions lead to qualitatively similar results for the the process. Thef - -|u) stands for time averages conditional on
guantities we study here. SE¥6] for more details. wn(t)=pu.

056138-2



CONTINUUM TIME LIMIT AND STATIONARY STATES. .. PHYSICAL REVIEW E 64 056138

Let us separate a deterministidus;) from a stochastic where thes(7— 7") comes from independence X§;(t) and

(dWs) term in this equation by replacing X, j(t") for t#t’ and the fact thaiXs;(t) are identically
. distributed in time leads to the expression in the second line.
al{DAt) =a (A) ;+ Xsi(). (m  Now

Here and henceforth, we denote averages pvby an over-
i ges PR (Xsi(DXe (D) _asiae (A%, agi(A),ar (A),

P P P

(11)

o+

P
R== > R~
w=1 The second term always vanishes fof—o because
while (- - -}, stands for an average over the distributions ~ @s,(A) is of orderN° [25]. In the first term, instead,

P(r+dr)—1 eFiUs,i(t) N
Ti(N=5—- 2 ——, 8) A1), =N+ al a* my e, (12
S,i Pdr P, E eFiUr’i(t) < |IU“>7T kgzl S’E,r’ s/ kG 1 st k| ( )
r

o ) i ) i is of orderN, which then gives a positive contribution in Eq.
which is the frequency with which agenplays strategy in (11) for N—oo.
the time intervalPr<t<P(7+dr). ~_ Equation(12) leads to a stochastic dynamics where the
Notice that g ;(7) will themselves be stochastic vari- ngise covariance depends on the stochastic variahlgs’)

ables, hence we also define the average on the stationafyemselves. The complications that result from this fact can
state as be avoided if one takes the approximation

()= lim —j dr(- ) u(n) ) (A2 p), ~(AZ)=g2, (13

his approximation can be justified naively by observing that
he dependence ong; of the correlations only involves the
global quantity{A?|w) /P for which one expects some sort

where the average inside the integral is performed with th
probabilities 7 (7).

Hence . . .
of self-averaging properties. Numerical results suggest that
Ug,i(7+d7)—Ug;(7) =dug;(7) +dWs;(7) terms that are ignored by E¢L3) are negligible forN>1,
but we were unable to prove this in gengr2b].
=—ag(A),dr Within this approximation the correlation, fo&d>1 be-
P(rt+d7)—1 comes
5 2 X0 (0 )

o ——
<dWS'i(T)dWr'j(T’)>Emasyianj&(T—T’)dT. (14
Now the first term is of orded r as required for a determin-
istic term. In addition it remains finite d8— oo [25]. Note  that for r#s or ]I correlations

The second term is a sum d?dr random variables LT ;
X,i(t) with zero average. We talker fixed andN very large, (dWs, (D) dW, (7 ))*asiar i~ 1N vanish as N—c.
so thatPdr>1 and we can use limit theorems. The variablesHowever’ It is Important to "e‘?p the off-diagonal terms bef
X, (1) are independent from time to time, because hott) cause they keep the dynamics of the_phase space point
and sj(t) are drawn independently at each time. Hence‘U(t»_{usli(t)}szld---51 igl ----- N cr:)nstralned to the Ilgear
Xgi(t) for Pr<t<P(r+dr) are independent and spacﬂe spanne y the . vec_tqr_s a >.
identically® distributed. ForPdr>1 we may approximate _ asils-1. s, i=1... N> whlch_contams th_e initial condi-
the second termiW,,; of Eq. (10) by a Gaussian variable {O" |U(0)). The original dynamics oUs,(t) indeed posses

with zero average and variance, this property. o
It is important to remark that the approximatida3)

S(r—7") P(r+d7) makes our approach a self-consistent theorydfer We in-

(dWsi(ndW, j(7')) = ——— > (Xsi(D)X; (1)) troduceo? as a constant in Eq13), which then has to be
P t=pr computed self-consistently from the dynamic equations.

Summarizing, the dynamics of; is described by a con-

M tinuum time Langevin equation,

=6(7—7")dr

P
dus(1)  ——
3ciyi - , o dr =—as i (A)+ 7si(7), (15
Strictly speakings;(t) is drawn from the distribution in Eq1)
and not frommrg; of Eq. (8). However, these two distributions differ
by a negligible amount as long as the conditinholds(see latey. (7si(7))=0, (16)
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o FIG. 2. Global efficiencyo®/N versusI’ for a=0.1<a, and

different system sizes. Lines refer to direct simulations of the MG
with N=160, 320, and 640. Finite size effect foB>1 are evident.
Symbols refer instead to the solution of the self-consistent equation
(36) for the same system sizes. For both methods and all values of
N, o is averaged over 100 realizations of the disorder. The arrow
2 marks the location of". predicted by Eq(34). In the inset, the
(17) theoretical prediction, Eq37), on the leading behavior @f?/N for

I'<1 (solid line) is tested against numerical simulations of the MG

. . . N . ointg for the same values dfl.
Equation(15), given its derivation, has to be interpreted (points

in the Ito sense. The expression for the noise strength is \we see then thaf tunes the strength of stochastic fluc-
confirmed by Fig. 1, where the measure oK  tyations in much the same way as temperature does for ther-
=3, (OC/(PNS in a MG is reported; note that these nu- mal fluctuations in statistical mechanics. The “individual in-
merical simulations were done fdf= and confirm Eq. verse temperature’T should indeed more correctly be
(17) is valid even fora<a,. Figure 2 compares the results interpreted as a learning ratéurthermore, it plays the role
of numerical simulations of the MG, as a functionlofwith  of a “global temperature.” We shall pursue this discussion
those of a semianalytic solution of Eq&l5)—(17), to be in detail below for the cas&=2.
discussed later. The agreement of the two approaches shows At this point, let us comment on the limit— o, which is
that Egs.(15—(17) are valid even in the symmetric phase of particular importance since it corresponds to the original
(a<ay) for all values ofI". MG. It is clear that in the limitl —« the dynamical Egs.
The instantaneous probability distributionsin the con-  (19) become problematic. The origin of the problem lies in
tinuum time limit, reads the order in which the limitt— o andI’—« is performed.
I () Indeed in EQ.(8) Ug;(t)=us;(7)+0O(d7) for Pr<t<P(r
e s +dr7). Therefore, as long dsdr<1 the difference between
S ef i(T). Eq.(8) andwg; in Eq.(18) is negligible. In practice, in order
- e to satisfy bothl'd7<1 andPdr>1, one need§ <P. When
this condition is not satisfied the instantaneous probability
This and Ito calculus then lead to a dynamic equation for(1) fluctuates very rapidly at each time step. Equati8n
msi(7). We prefer to exhibit this fol’;=T and using the averages out these high-frequency fluctuations so that, even
rescaled timg=1I"r, for I' =0, the distributionms;(7) of Eq. (8) is not a discon-
tinuous step function ofis;(7), as suggested by E@18).
High-frequency fluctuations contribute to the functional form
of mg; onug;, which will differ from Eq. (18).
Summarizing, when we lef —« only after the limitN
—o has been taken, no problem arises. There is no reason to

FIG. 1. Noise strength averaged over all agdstarg; when it
is multiplied by « (diamond$, one recoverss®/N (circles (P
=32, S=2, 30 iterations,I'=x, average over 50 samp)es
Dashed lines are for eye guidance only.

(77 7,(7)) = @ 87— 7).

(18)

71's,i(T):

2

- L = r R
= —msi[as i (A) = mi-ai(A) ]+ Z—Nﬂs,i(ffs,i— 7)

dﬂ-s,i

dt

+\T g i(nsi— mim).

The first term in the right-hand side comes from the deter

ministic part of Eq(15), the second from the Ito terfwhere “This is ana posteriorilearning rate. Indeed Il/is the time the

we neglected terms proportional & sa; s ~1/\N for s dynamics of the scores needs in order to learn a payoff difference.
#s'), and the third from the stochastic part. It is clear that,From a different viewpoint” tunes the randomness of the response
in the limit I'— 0 the last two terms vanish and the dynamicsof agents. The larger the randomness, the longer it takes to average
becomes deterministic. fluctuations out.

(19
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believe that results change if the order of the limits is inter- Hence the statistical mechanics approach based on the
changed. This expectation, as we shall see, is confirmed Istudy of the ground state &f is correct. This approach gives

numerical simulationgsee Fig. 2 direct numerical simula-

tions of the MG deviate from the prediction of Eq45)—

(17) only for finite size effects that vanish &— «.
Equations(15)—(17) are our central result. We shall de-

vote the rest of the paper to discuss their content and to show
that all of the observed behavior of the MG can be derived

from these equations.

IV. STATIONARY STATE

Let us take the average, denoted(by - ), of Eq.(15) on
the stationary statéSS. Let

fs,i:<7Ts,i>

be the frequency with which agentplays strategys in the
SS. Then we have

|

Given the relation betweens; andug; and considering that
the long-time dynamics ofis; in the SS isug;(7)=const
+vs;7, we have thati) each strategy that is played in the SS
by agenti must have the same “velocityts;=v{" and(ii)
strategies that are not playeide., with f;=0) must have
vsi<vf . In other words

Us,i

dr

U= ——asyi(A>, <A|I“>:E fS/xiag’yi'
j.s’

—ag(A)=vF V i,s suchthat f,;>0, (20

—agi(A)<v{ V i,s suchthat fg;=0. (21)

Consider now the problem of constrained minimizatiorHof
in Eq. (4), subject tof ;=0 for all s,i and the normalization
conditions. Introducing Lagrange multipliers to enforce
S4fgi=1 for alli, this problem reads
N s
[<A>2_2 M(l—E fs,i)}-
=1 s=1

min (22

{fs,i=0}
Taking derivatives, we find that ifs;>0 thenag(A)+\;
=0 whereas iff;;=0 thenag;(A)+\;=0. These are ex-
actly Egs.(20) and (21) wherev; =\;. We then conclude
that the two problems, Eq$20) and (21) and Eq.(22) are
one and the same problehin other wordsf; can be com-
puted from the constrained minimizationldfas proposed in
Refs.[3,4].

the frequencyfs; with which agents play their strategies.
We remark once more th&t is a function of the station-
ary state probabilitie$s; . Also note that

N S
H{Ws,i}:_z 2 Qg i jTsiTs |

ij=lss'=1

as a function of the instantaneous probabilities is not a
Lyapunov function of the dynamics. The dynamical vari-
ablesg;(t) are subject to stochastic fluctuations of the or-

der of JT'; around their average valuég; . Only in the limit
I'i;—0, when the dynamics becomes deterministic and
—fg;, the quantityH{ ;! becomes a Lyapunov function.
The solution to the minimization dfl reveals two quali-
tatively distinct phase§3,4] that are separated by a phase
transition occurring as&— «.. We discuss qualitatively the
behavior of the solution for a geneig&and leave for the next
section a more detailed discussion in the simpler &s@.

A. Independence onl” for a>a,

When a> «a, the solution to Eq.(22) is unique andH
>0. Hencefg; does not depend ofi, neither doeH. In
addition we shall see that
for i#j,

<7Ts,i7Ts’,j>:<7Ts,i><7Ts’,j>:fs,ifs’,j (23

implying that

O'ZEN+2 2 as,iar,j<7Ts,i7Tr,i>
i#] sr

does not depend o’ either. Hence the solutioffg;}
uniquely determines all quantities in the SS, as well as the
parameters that enter into the dynamjiostice the depen-
dence ono? in Eq. (17)]. In particular,o® does not depend
onl.

B. Dependence od" and on initial conditions for a<ea,

For a< a, the solution to the minimization problem is not
unique: there is a connected set of poifits;} such thatH
=0. Let us first discuss the behavior of the system in the
limit I'— 0, where the dynamics becomes deterministic. The
dynamics reaches a stationary stgtg;} that depends on the
initial conditions.

In order to see this, let us introduce the vector notation

Sindeed both problems can be put in the form of a linear comple{v)={vsi,s=1,...S,i=1,... N}. Then for all times

mentarity problen27],

2 asyias/'jfs/’j-i-vi*BO,
i’
fS,i 2 aSYias/'jfs/’j“FUik =0
i’
This problem has a solution for all values ®©f because of non-
negativity of the matrvag;a j, see Ref[27].

05613

|u(7)) is of the form

=]

lu(n)=|u(0))+ X |a“)CH(7),

pn=1

whereC#(7) areP functions of time.

If there are vectorév| such thatv|a*)=0 for all u, then
(v|u(7))={(v|u(0)), i.e., the components of the scores will
not change at all along these vectors. As a result the SS will

8-5
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depend on initial conditionf(0)). These vectorgv| exist
exactly fora<a, [4], because the “dimensionality” of the
vectors|u(r)) is larger tharP.®

The picture is made even more complex by the fact that

for a<ag, whenT is finite, Eq.(23) does not hold. Hence

o? has a contribution, which depends on the stochastic fluc-
tuations arounds; . The strength of these fluctuations, given

by Egs.(17) and(19), depends ofi” and o2 itself. We face,
in this case, a self-consistent probleat: enters as a param-

eter of the dynamics but should be computed in the station-
ary state of the dynamics itself. Therefore, the solution to

this problem and hence? depends oif'. The solution{f;}

to the minimization ofH should also be computed self-
consistently. As a result, the SS properties acquire a deper,

dence onl".

The condition (23), which is similar to theclustering
property in spin glass€®8], plays then a crucial role. We
show below how the conditiof23), the dependence on ini-
tial conditions, and od” enter into the detailed solution for

PHYSICAL REVIEW E 64 056138

PUYID w9 .
ot —El oy | € 2 jtanfty;)

1 N
+5 2 &g ] PUyibt, (26

=1

where we have introduced the parameter
_ 2aN 27
Fo?’

IJy_lultiply Eqg. (26) by y; and integrate over all variables. Us-

ing integration by parts, assuming tHat-0 fast asy;—,
one gets

N

60-2 &t

Sw=-F g (tanh(y)).

S=2. By similar arguments our conclusion can be general-

ized to allS>2.

V. THE CASE S=2

We work in this section with the simpler case &2
strategies, labeled bg==*. We also setl’;=I" for all i.
Following Refs.[3,13] we introduce the variables

Let us rescale timé=1I"7 and introduce the variables

U i(m)—u_i(7)
Vit =I =t

Then, using Eq(8), the dynamical equationd.5—(17) be-
come

=z

dy,

Si=-E0 — 2 Getanity) +4i, (24
o

(GOEGE)y= &g at-t). (25

The Fokker-PlanckFP) equation for the probability dis-
tribution P({y;},t) under this dynamics reads

®In order to compute the dimensionality of the vectou$ we
have to take into account tHe normalization conditions and the
fact that strategies that are not playetl ;=0) should not be
counted. So if there arBl. variablesfg;>0, the relevant dimen-
sion of the space di) is N~ —N. Hence vectorgv| orthogonal to
all |[a*) exist forN. —N>P, i.e., fora<a.=N-(a;)/N—1.

Let us look for solutions with(y;)~v;t and definem,
=(tanhf;)). Hence fort—« we have

(28)

— N —
-2 &i&m,
<1

Now, eitherv;=0 and(y;) is finite orv;# 0, which means
thaty,— = andm;=sgnv; . In the latter caseu;#0) we
say that agent is frozen[13], we call F the set of frozen
agents andp=|F]/N the fraction of frozen agents.

As in the general case, the parameteydor i € 7 and
m;=(tanh§)) for i ¢ F are obtained by solving the con-
strained minimization of

P}

'UII—‘

N 2
Q*+ Zl ff"m,:| .

When the solution of miHl is unique, i.e., fox> a., the
parameteram; depend only on the realization of disorder
{&,Q*}, and their distribution can be computed as in Ref.
[3]. When the solution is not unique, i.e., faK a;, we are
left with the problem of finding which solution the dynamics
selects. Let us suppose that we have solved this probhem
shall come back later to this issuso that allm; are known.

Using the stationary condition ER8), we can write the
FP equation for the probability distributio®,(y;,i € F) of
unfrozen agents. For times so large that all agent# iawre
indeed frozeri.e., s;(t) =sgnv;] this reads

(9Pu
ot |é}' &yl

1
2 gg,{tanny,) m+BayJ]P .

This has a solution

P,x exp{—,BE [In coshyj—mjyj]}. (29
ixa
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Finally we have to impose the constraint thht(t)) —0: asT' exceeds a critical learning raté., the time-
={y;(t)}; must lie on the linear space spanned by theindependent SS becomes unstable anfifarcation to a
vectors |¢#), which contains the initial conditioy(0)).  period-2 orbit occurs. Neglecting the stochastic tgfmRef.
This means that [6] shows that this picture can be extendedats 0.” This
approach suggests a crossover to a “turbulent” dynamics for
I'>T., where

Pu“PY(O)eXp{ —ﬁ% [In coshy;— mjyi]] . (30

4
; PR r = 34
where the projectoPyq) is given by c(a@) (1+ \/;)2(1_@ (34)
P " N P
Po=Il [ acTl ay-v©-3 crgr|. 2
m= —x = m=
N
31 1
0 Q=5 2 .
N =1

We find it remarkable thal', which is introduced as the
inverse of anindividual “temperature” in the definition of
the model, actually turns out to be proportional@o? [see
Eq. (27)], which playscollectivelya role quite similar to that
of temperature.

Using the distribution Eq(30), we can compute

Both Q andI'; can be computed exactly in the liniit
—oo within the statistical mechanics approd&6].

This approach howeveli) does not properly takes into
account the stochastic terrfi,) does not explain what hap-
pens forl'>T";, and (iii) does not explain why such effects

N occur only fora<a.
o2=H+ 2 §i2(1_ miZ) + E ?&,—((tanhyi -m;) The stochastic dynamics derived previously gives detailed
i=1 1] answers to all these issues. We first restrict attention to sym-
metric initial conditionsy;(0)=0 and then discuss the de-
pendence on initial conditions. The choiceypf0)=0V i is
This depends o, i.e., ona? itself by virtue of Eq.(27). conveni.ent becausg it allows one tp use th.is same.symmetry
The stationary state is then the solution of a self-consisterif identify the solutio{m} to the minimization ofH, inde-
problem. Let us analyze in detail the solution of this self-Pendently ofl". To be more precise, one can introduce a
consistent problem. “magnetization”

X (tanhy; —m;)). (32

N N
1 1
A a>ac M=lim = > (s(hs(0)=5 2 m. (39
For a> a, the solution of mirH is unique, and hence, toe T IEE =1

depends only on the realization of the disorder. In addition, . i . :
the numberN—|F=N(1—¢) of unfrozen agents is less which measures the overlap of the SS configuration with the

than P and the constraint is ineffective, i.6%=1. The initial condition. Symmetric initial conditions are related to
, LRy =1.

scores|y) of unfrozen agents span a linear space, which i :_0 S_S' These are the_ states we .fOCUS on. The SO.IUUO” IS
embedded in the one spanned by the ved#ts. Hence the deﬂved in two stepstl) find the mlnémum{mi} of H with
dependence on initial conditionys(0) drops out. Therefore, M=0, (2) compute self-consistently®. The numerical pro-
the probability distribution ofy; factorizes as in Eq(29).
Then the third term of Eq(32), which is the only one that
depends org, vanishes identically. We conclude that, for
a>ag, o only depends om; and is hence independent of
I' as confirmed by numerical simulations.

Summarizing, fore> «, one derives a complete solution
of the MG by finding first the minimurgm;} of H and then
by computinge?, 8, and the full distribution ofy; from Eq.

"The idea of Ref[6] is the following: imagine that our system is
close to a SS poiny;* at time t=t,, when u(t)=1. Will the
system be close tg" when the patterm.=1 occurs again the next
timet'=t,,? To see this, let us integrate EQ4) from t=t, to
tis 1. In doing this we(i) neglect the noise terifi.e., £;=0) and(ii)
assume that tanfy(t)~tanhy;(t,) stays constant in the integration
time interval. This latter assumption is similar to the recently intro-

(29. duced[ 7] batch version of the MG, where agents update their strat-
egies everyP time steps. This leads to the study of a discrete time
B. a=<a.: Dependence onl" and crowd effects dynamical system
N
Whena<1- ¢, on the other hand, the solution of nth B — -
is not unique. Furthermore, the constraint cannot be inte- Yilticr) =¥t =T Q§i+;§i§itam[yi(tk)] ' (@3
grated out and the stationary distribution depends on the iniyhere the factol’ comes becausg, ,—t, is on average equal to
tial conditions. I'. The linear stability of fixed point solutions is analyzed setting

Numerical simulation$8] show thato? increases witH" yi(t) =y* + dy;(k) and computing the eigenvalues of the linear-
for a<a, (see Fig. 2 This effect has been related to crowd ized mapdy;(k+1)==;T;;dy;(k). There is a critical value of
effects in financial marketgl2]. Reference$6] has shown above which the solutioy* become unstable, which is given by
that crowd effects can be fully understood in the limit  Eq. (34).
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cedure for solving the problem is the following: given the  C. Selection of different initial conditions in the replica
realization of disordef¢&! ,Q*}, step(1)—finding the mini- calculation
mum{m;} of H—is straightforward. For stef?) we sample As discussed above, the stationary state properties of the
the distribution(30) with the Monte Carlo methdtht inverse WG in the symmetric phase depend on the initial conditions.
temperature8 and measure thg-dependent contribution of can the statistical mechanics approach to the @] be
o? in Eq. (32), extended to characterize this dependencdfarL? If this is
possible, how do we expect the resulting picture to change
o whenT increases? We shall first focus on the first question
2(B)=_2, &é&((tanhy;—my)(tanhy;—m;)) 4. (i.e.,I'<1) and then discuss the second.
1#] Of course one can introduce the constraint on the distri-
bution ofy; in the replica approach in a straightforward man-
Here(- - - ), stands for an average over the distributi@g) €' This leads, however, to tedious calculations. We prefer

with parameterB. Finally we solve the equation to follow a different approach. In the< a. phase the mini-
mum ofH is degenerate, i.el{ =0 occurs on a connected set

of points. Each of these points corresponds to a different set
of initial conditions, as discussed above. In order to select a
. (36) particular point withH=0 we can add a potentiaj=,(s;
—s¥)?/2 to the HamiltonianH, which will favor the solu-
tions closer tas , and then let the strength of the potential
This procedure was carried out for different system sizego to zero. This procedure lifts the degeneracy and gives us
and several values df. The results, shown in Fig. 2, agree the statistical features of the equilibrium closeso.
perfectly well with direct numerical simulations of the MG.  The nature of the stationary state changes as the asymme-
Actually Fig. 2 shows that, fol’>1, the solution of the try in the initial conditions changes. If we talgd =s*, the
self-consistent equatio(86) suffers much lesser finite size state ats* =0 describes symmetric initial conditions and in-
effects than the direct numerical simulations of the MG. Fig-creasings* >0 gives asymmetric states.
ure 2 also shows that, even if only approximate, Ef) The saddle point equations of the statistical mechanics

provides an useful estimate of the point where the crossovegpproach of Ref[3] can be reduced to two equations,
occurs.

O'Z(F)=a'2(0)+2

INE)

It is possible to computer?(I") to leading order inl" N
<1. The calculation is carried out in Appendix B in detail. Q= tz%(z), (38)
The result is
= X_[" bazg(2) 39
Z 11— 1-Q+a(1-3 X:—f 225%(2),

whereDz=(dz/\/277)e‘22’2, So(2) e[ —1,1] is the value of

The inset of Fig. 2 shows that this expression indeed repro§ that minimizes

duces quite accurately the sméllbehavior ofo?. Note fi- 1 140 1
nally that Eq.(36) has a finite solutiono®(%)=a?(0) V,(s)=-s2— v/ 25+ = p(1+ x)(s—s*)2, (40)
+3(0) in the limitI'—c. Furthermore, it is easy to under- 2 a 2

stand the origin of the behaviar?/N~1/a for Eq. (36).

Because of the constraint, whe; is positive (negative
the fluctuations of tanly)—m are positively (negatively

andy=B(Q—q)/« is a “spin susceptibility.” There are two
possible solutions. One witly<c finite as »—0, which

: describes thex>«. phase. The other hag~1/7», which
correlated with tanhyf)—m. If we assume tha{[tanhi)  giverges asy— 0. This solution describes the< a, phase.
—mi][tanhf/;)—m))=c&¢; for some constant, we find= e focus on this second solution, which can be conveniently
=c3i,j&&%. This leads easily t&/N=c/(4), which ex-  parametrized by two parametezs and ;. We find

plains the divergence af?/N asa—0 for I'>1.

-1 if z<— Zy— €g

8 . . Z+ 60 .

The Monte Carlo procedure follows the usual basic stépsA So(2) = if —zp—e€9<z<zp— €
movey;—Y;+ e&!* is proposed withu ande drawn at randomyii) 0
the “energy” 1 if z=2y5—¢g

N
EM:; [In coshy,—my] Indeed Eq.(38) gives Q(z,,€,) and Eq.(39), which for y

of the new configuration is computed, afiiil) the move is accepted — readsya(1+Q)=JDzzg(z), then givesa(zy, €g).
with a probability equal to min(&; #*F), where AE is the “en- With €,# 0 one finds solutions with a nonzero “magne-
ergy” difference. tization” M =(s;). This quantity is particularly meaningful,
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FIG. 3. Relation betwee® and M, for «=0.1, derived from FIG. 4. Global efficiencyo?/N versusl'/T; for a=0.1<a,,
analytic calculation(full line) and from numerical simulations of N=160 agents, and different initial conditiogg. The valuel', is
the MG with different initial conditionsyy (¢ :P=32N=320[ computed from Eq(34) and is shown in the legend.
=0.1). The inset shows the dependence&loind M on the initial

conditionyo. creases witly, because it is an increasing functionIoff ..

in this context, because it measures the overlap of the beha\-I/_—hIS effect adds up to the decrease of Inedependent part

: ) ; ST . of o2 discussed previously.
ior of agents in the SS with theé priori preferred strategies, Figure 4 also shows that tie> T, state is independent of

. 1 N initial conditionsy,. This can naively be understood observ-
MEJ Dz 5(z)=lim = >, (si(t)si(0)).  (41) ing that stochastic fluctuations induce fluctuatiafyg that
- oo Ni=1 increase withl". ForI'>1 the asymmetry,, of initial con-

ditions is small compared to stochastic fluctuatidys and
Note indeed that one can always perform a “gauge” transhence the system behaves aggeo.

formation in order to redefine=+1 as the initially pre-
ferred strategy. This amounts to takigg0)=0 for all i.

Which SS is reached from a particular initial condition is, D. The maximally magnetized stationary state
of course, a quite complex issue that requires the integration The maximally magnetized S@MSS), obtained in the
of the dynamics. However, the relation betwe@nand M limit y,—, is also the one with the largest value@f and

derived analytically _from .Eqs(3§) and (41) can easi!y be hence with the smallest value of=N(1—Q)/2. 0?IN is

checked by numerical simulations of the MG. Figure 3pjotted againstr both for symmetrig/o=0 initial conditions

shows that the self-overla and the magnetizatiodl com- 544 for maximally asymmetric ongg— in Fig. 5. The

puted in numerical simulations with initial conditioyg(0) inset shows the behavior & andM in the MMSS.

=y, for all i, perfectly match the analytic results. The inset Remarkably we find that?/N vanishes linearly with in

of this figure shows how the final magnetizatidhand the e MMSS? This means that, at fixeB, asN increases the

self-overlapQ in the SS depend on the asymmetlry of  f,ctuationa? remains constant. This is in contrast with what

initial conditions. _ happens in theg,=0 state forl'<I',, wheres? increases
Let us finally discuss the dependencelbfor asymmetric linearly with N, and with the casd'>T ., where o-2xN?

initial conditions. Equation(34) provides a characteristic [18,6]. Note also that the lowest curve of Fig. 5 also gives an

value ofI" as a function ofx andQ. This theoretical predic- upper bound to the? of Nash equilibriasee Refs[3,4,29).

tion is tested against numerical simulations of the MG in Fig. * The MMSS is also the most stable state against crowd

4: when plotted againdt/T;, the curves ofr?/N obtained effects: if we putQ(a,y,==)=1-ca, as appropriate for

from numerical simulations approximately collapse one ontgy,o MMSS, we find thaf' .~ 1/a diverges withe.

the other in the larg&’ region. Figure 4 suggests thBt in

Eq. (34) provides a close lower bound for the onset of satu-

ration to a constant? for largeI’. We find it remarkable that

a formula such as Eq34), which is computed in the limit We have clarified the correct derivation of continuous

I'—0, is able to predict the largé behavior. time dynamics for the MG. This on the one hand reconciles
With respect to the dependence on initial conditions, wethe two current approachg¢8,9]. On the other it leads to a

observe thal’. is an increasing function d and hence it

increases with the asymmetyy of initial conditions. Hence,

for a fixed I', the fluctuation-dependent pa¥t of o de- 9This result was also found analytically ]

VI. CONCLUSIONS
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100 : i . I Ui:_as,i<g(A)> if fs,i>0
and

Ui>_as,i<g(A)> if fs;,i:O-

For any fixedu, A(t) is well approximated by a Gaussian

Z os0 L variable with mean

(Alu)y= % fsiak;

and varianceD = o>—H. Here we neglect dependences on
. Also we treaD as a parameter and neglect its dependence
on the stationary state probabilities; . Hence we can write

0.00 e
10 10

= dx 2
— —X4/2
FIG. 5. 02/N for the MG with initial conditionsy,=0 (full ine) (9(A)|w)= fﬁm 5=¢ 9((Alw)+Dx).
andy,— o (dashed ling The inset reports the behavior MfandQ

in the y,—e SS. Note thaQ is linear ina. The stationary state conditions of the dynamics above can

. . ) again be written as a minimization problem of the functional
complete understanding of the collective behavior of the 9 P

MG. We confirm that stationary states are characterized by
- o ; ) 1

the minimum of a Hamiltonian, which measures the predict- H ——

ability of the game. Fow> « we find a complete analytic ¢ P

solution, whereas foww<<a. the statistical mechanics ap-

proach of Ref[3] is valid for I'—0. It is, in principle, pos-  With

sible to introduce the new elements discussed here in the

approach of Ref[3] and to derive a full analytic solution. _dG(x)

We have indeed derived the first term of the series expansion 9(x)= dx

for I'<1, which agrees perfectly with numerical data. The

extension of the approach of Ré¢B] involves lengthy cal- andD=o?—H, which must be determined self-consistently.

culations and it shall be pursued elsewhere. Indeed taking the derivative &1, with respect tdfs; and

Finally we note that the results derived in this paper genimposing the constrairft;;=0 and normalization, we arrive

eralize to more complex models. It is worth remarking thatat exactly the same equations that describe the stationary

the solution to the FP equation is no more factorizable, irstate of the process.

general, when agents account for their market impact as in The Hamiltonian for the original MG is derived setting

Refs.[3,6,4]. Hence, as long as there are unfrozen agents, wg(x) =sgnx, which leads to

expect that the stationary state dependslonHowever,

when the agents take fully into account their market impact, 1

all of them are frozen and the conclusion that agents con- Hsign:B

verge to Nash equilibria remains valid.

iM o

© dx
) IWEE XlzG(% fs,iag’ﬁr\/ﬁx)

"

(Alw)

VD

The analysis of stochastic fluctuations can be extended to
ACKNOWLEDGMENTS nonlinear cases in a straightforward manner. Again the key

We acknowledge constructive discussions with A.C.c.point is that the dynamics is constrained to the linear space

Coolen, A. Engel, J.P. Garrahan, J.A.F. Heimel, and D. SheisPanned by the vectofa’). For &> a, we have no depen-
rington. dence on initial conditions. However, it is not easy to show,

in general, that the distribution of scores factorizes across
agents. This means that there may be a contribution of fluc-
tuations too?>—i.e., 3 >0—so0 we cannot rule out a depen-

p
E ie7<A|M>2/D + W—M>erf
u=1

ko

APPENDIX A: NONLINEAR MINORITY GAMES

Take a generic dynamics dence ofo? on I'. Numerical simulations fog(x) = sgnx
show that such a dependence, if it exists, is very weak. Any-
Usi(t+1)=Ug, (1) —atPg[A(1)], way even thoughr? only depends oriig;, the minimization

problem depends 0B = o?—H, which must then be deter-
whereg(x) is some function. When we carry out the limit to mined self-consistently.
continuous time we find a deterministic term, which is pro-  For a< a the dependence on initial conditions induces a
portional to —ag;(g(A)). The stationary state conditions correlation of scores across agents. As a restltdepends
then read onT just as in the linear case discussed above.
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APPENDIX B: SMALL T EXPANSION and work them out separately. For the first we use
ForI'<<1 it is appropriate to considgg>1 and to take N
2 S gitanhy ~m)= 3 T
yi=arctanhni+\/—E = \/— ”

s0 that[In coshy, —my;]=3(1-nP)Z+0(8 3. Hence we SO that
have to sample a distribution

N 2
1 ; —m MVTH Y eVeY
P{zi}oce)([{—E 2, (1_mi2)zi2 , <{21 gl(tanh)ﬁ m|)} > ,6’P MEVVT T <C c >
wherez; has the form Ez Q
BP 2B
P
z=2, crEl. e P 2
a=1 Within the approximation (+3m)~(1—3Q) we are

able to derive a closed expression also for the second term,
It is convenient to express everything in terms of the coeffi-

cientsc*. Their pair distribution functiofPDF) is derived
from that ofz and it reads

N
Z?-ﬂmW%—Eﬂl#M3M@>

1
P{c“}ocexp{ 3 2 cHTHPCY
v

L1730
N B2
TMYV:iZl (A-mdere. Hence we find
Frol\rl]:)vtvhi/?/evvsp}::;1 %gﬂtcevrzjﬁ[(g li]r:;)v two contributions 1-Q 1-3Q |1 2
) o ' 2(,3)%[— —5a E+O(/3 ).
2('8):<{2 §i(tanhy; - >+i21 &l (tanhy,)%] This equation and Eq27) lead to Eq.(37).
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