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Continuum time limit and stationary states of the minority game
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We discuss in detail the derivation of stochastic differential equations for the continuum time limit of the
minority game. We show that all properties of the minority game can be understood by a careful theoretical
analysis of such equations. In particular,~i! we confirm that the stationary state properties are given by the
ground state configurations of a disordered~soft! spin system,~ii ! we derive the full stationary state distribu-
tion, ~iii ! we characterize the dependence on initial conditions in the symmetric phase, and~iv! we clarify the
behavior of the system as a function of the learning rate. This leaves us with a complete and coherent picture
of the collective behavior of the minority game. Strikingly we find that the temperaturelike parameter, which
is introduced in the choice behavior ofindividual agents turns out to play the role, at thecollectivelevel, of the
inverse of a thermodynamic temperature.
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I. INTRODUCTION

Even under the most demanding definition, the minor
game~MG! @1,2# definitely qualifies as a complex system
The MG can be regarded as an Ising model for system
heterogeneous adaptive agents, which interact via a gl
mechanism that entails competition for limited resource,
found, for instance, in biology and financial markets. In sp
of more than three years of intense research, its rich dyna
cal behavior is still the subject of investigations; many var
tions of the basic MG are being proposed, each uncove
new surprising regions of phase space.

Most importantly, Refs.@3–7# have shown that much the
oretical insight can be gained on the behavior of this clas
models, using nonequilibrium statistical physics and stati
cal mechanics of disordered systems. The approach of R
@3–6# rests on the assumption that, in a continuum time lim
~CTL!, the dynamics of the MG can be described by a se
deterministicequations. From these, one derives a funct
H that is minimized along all trajectories; hence, the stati
ary state of the system corresponds to the ground state oH,
which can be computed exactly by statistical mechan
techniques. This approach has been challenged in Refs.@8,9#,
which have proposed astochasticdynamics for the MG, thus
leading to some debate in the literature@10,11#.

In this paper, our aim is to analyze in detail the derivati
of the CTL in order to clarify this issue. We show that
proper derivation of the CTL indeed reconciles the two a
proaches: the resulting dynamical equations—Eqs.~15!–~17!
below, which are our central result—are indeedstochastic, as
suggested in Refs.@8,9#, but still the stationary state of th
dynamics is described by the minima of the functionH, as
suggested in Refs.@3,4#. We then confirm the analytic result
derived previously. In few words, our analysis follows tw
main steps: first, we characterize the average behavio
agents by computing the frequency with which they p
their strategies. This step can be translated in the study o
ground state properties of a soft spin disordered Hamilton
1063-651X/2001/64~5!/056138~12!/$20.00 64 0561
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Second, we characterize the fluctuations around the ave
behavior. To do this, we explicitly solve the Fokker-Plan
equation associated with the stochastic dynamics.

The results we derive are the following.
~1! We derive the full probability distribution in the sta

tionary state. Remarkably we find that the parameter tha
introduced as a temperature in the individual choice mo
turns out to play the role of the inverse of a global tempe
ture.

~2! For a.ac the distribution factorizes over the agen
whereas in the symmetric phase (a,ac) agents play in a
correlated way. In the latter case, the correlations contrib
to the stochastic force acting on agents. We show how
dependence of global efficiency on individual temperat
found in Ref.@8# arises as a consequence of these corr
tions.

~3! We extend the analytic approach of Refs.@3,4# to the
a,ac phase and asymmetric initial conditions. The depe
dence on the initial conditions in this phase, first noticed a
discussed in Refs.@3,4#, has been more recently studie
quantitatively in Refs.@9,7#. We clarify the origin of this
behavior and derive analytic solutions in the limitG→0.

~4! We show that the stronger the initial asymmetry
agents’ evaluation of their strategies, the larger is the e
ciency and the more stable is the system against crowd
fects @12#.

~5! We derive the Hamiltonian of MGs with nonlinea
payoffs.

This leaves us with a coherent picture of the collect
behavior of the minority game, which is an important refe
ence framework for the study of complex systems of hete
geneous adaptive agents.

II. THE MODEL

The dynamics of the MG is defined in terms of dynamic
variables Us,i(t) in discrete time t50,1, . . . . These are
scores, propensities or ‘‘attractions’’@14#, which each agent
©2001 The American Physical Society38-1
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i 51, . . . ,N attaches to each of his possible choicess
51, . . . ,S. Each agent takes a decisionsi(t) with

Prob$si~ t !5s%5
eG iUs,i (t)

(
s8

eG iUs8,i (t)

, ~1!

where G i.0 appears as an ‘‘individual inverse temper
ture.’’ The original MG corresponds toG i5` @1# and was
generalized later toG i[G,` @8#.

The public information variablem(t) is given to all
agents; it belongs to the set of integers (1, . . . ,P) and can
either be the binary encoding of the lastM winning choices
@1#, or drawn at random from a uniform distribution@15#; we
stick to the latter case for sake of simplicity.1 The action
asi (t),i

m(t) of each agent depends on its choicesi(t) and onm(t).

The coefficientsas,i
m , called strategies, play the role o

quenched disorder: they are randomly drawn sig
(Prob$as,i

m 561%51/2), independently for eachi, s, andm.
On the basis of the outcome

A~ t !5(
i 51

N

asi (t),i
m(t) , ~2!

each agent updates his scores according to

Us,i~ t11!5Us,i~ t !2as,i
m(t) A~ t !

P
. ~3!

The idea of this equation is that agents reward@Us,i(t11)
.Us,i(t)# those strategies that would have predicted themi-
nority sign—A(t)/uA(t)u. The MG was initially proposed
with a nonlinear dependence onA(t), i.e., with a dynamics
Us,i(t11)5Us,i(t)2as,i

m(t)sgn@A(t)#. This leads to qualita-
tively similar results. The extension of our theory to nonli
ear cases is dealt with in Appendix A. We shall not discu
any longer the interpretation of the model, which is d
cussed at length elsewhere@4,17–19#.

The sources of randomness are in the choices ofm(t) by
nature and ofsi(t) by agents. These are fast fluctuating d
grees of freedom. As a consequence also,Us,i(t) and hence
the probability with which agents chosesi(t) are subject to
stochastic fluctuations. Our analysis will indeed focus on
characterization of the low-frequency fluctuations ofUs,i by
integrating out the high-frequency fluctuations ofm(t) and
si(t). This will become clearer in the next section. For t
time being let it suffice to say that there are two levels
fluctuations, that of ‘‘fast’’ variablesm(t) andsi(t) and that
of ‘‘slow’’ degrees of freedomUs,i(t).

The key parameter is the ratioa5P/N @18# and the two
relevant quantities are

s25^A2&, H5
1

P (
m51

P

^Aum&2, ~4!

1Both prescriptions lead to qualitatively similar results for t
quantities we study here. See@16# for more details.
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which measure, respectively, global efficiency a
predictability.2

Generalizations of the model, where agents account
their market impact@3,4#, where deterministic agents—so
called producers—are present@5#, or where agents are al
lowed not to play@20–24#, have been proposed. Rather th
dealing with the most generic model, which would depe
on too many parameters, we shall limit our discussion to
plain MG. Furthermore, we shall specialize, in the seco
part of the paper, to the caseS52, which lends itself to a
simpler analytic treatment. The analysis carries through
obvious ways to the more general cases discussed in R
@4,5,3,24#.

III. THE CONTINUUM TIME LIMIT

Our approach, which follows that of Refs.@3,4#, is based
on two key observations.

~1! The scalings2;N, at fixeda, suggests that typically
A(t);AN. Hence time increments ofUs,i(t) in Eq. ~3! are
small ~i.e., of orderAN/P;1/AN).

~2! Characteristic times of the dynamics are proportio
to P. Naively this is because agents need to ‘‘test’’ the
strategies against allP values ofm, which requires of the
order of P time steps. More precisely, one can reach t
conclusion by measuring relaxation or correlation times a
verifying that they indeed grow linearly withP ~see Ref.
@10#!.

The second observation implies that one needs to st
the dynamics in the rescaled timet5t/P. This makes our
approach differ from that of Refs.@8,9#, where the time is not
rescaled.

In order to study the dynamics forP,N@1 at fixeda, we
shall focus on a fixed small incrementdt such thatPdt
5aNdt@1. This means that we take the continuum tim
limit dt→0 only after the thermodynamic limitN→`. We
focus only on the leading order inN. Furthermore, we shal
also considerG i finite and

G idt!1, ~5!

which means that the limitG i→` should be taken after the
limit dt→0. The orders in which these limits are take
given the agreement with numerical simulation results, d
not really matter: as we shall see differences only enter in
finite size corrections. We shall come back later to the
issues.

Iteration of the dynamics forPdt time steps, fromt
5Pt to t5P(t1dt) gives

us,i~t1dt!2us,i~t!52
1

P (
t5Pt

P(t1dt)21

as,i
m(t)A~ t !, ~6!

where we have introduced the functionsus,i(t)5Us,i(Pt).

2Averageŝ •••& stand for time averages in the stationary state
the process. Then̂•••um& stands for time averages conditional o
m(t)5m.
8-2
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Let us separate a deterministic (dus,i) from a stochastic
(dWs,i) term in this equation by replacing

as,i
m(t)A~ t !5as,i^A&p1Xs,i~ t !. ~7!

Here and henceforth, we denote averages overm by an over-
line

R5
1

P (
m51

P

Rm,

while ^•••&p stands for an average over the distributions

ps,i~t!5
1

Pdt (
t5Pt

P(t1dt)21
eG iUs,i (t)

(
r

eG iUr ,i (t)

, ~8!

which is the frequency with which agenti plays strategys in
the time intervalPt<t,P(t1dt).

Notice that ps,i(t) will themselves be stochastic var
ables, hence we also define the average on the statio
state as

^•••&5 lim
t0 ,T→`

1

TEt0

t01T

dt^•••&p(t) , ~9!

where the average inside the integral is performed with
probabilitiesps,i(t).

Hence

us,i~t1dt!2us,i~t!5dus,i~t!1dWs,i~t!

52as,i^A&pdt

1
1

P (
t5Pt

P(t1dt)21

Xs,i~ t !. ~10!

Now the first term is of orderdt as required for a determin
istic term. In addition it remains finite asN→` @25#.

The second term is a sum ofPdt random variables
Xs,i(t) with zero average. We takedt fixed andN very large,
so thatPdt@1 and we can use limit theorems. The variab
Xs,i(t) are independent from time to time, because bothm(t)
and sj (t) are drawn independently at each time. Hen
Xs,i(t) for Pt<t,P(t1dt) are independent an
identically3 distributed. ForPdt@1 we may approximate
the second termdWs,i of Eq. ~10! by a Gaussian variable
with zero average and variance,

^dWs,i~t!dWr , j~t8!&5
d~t2t8!

P2 (
t5Pt

P(t1dt)

^Xs,i~ t !Xr , j~ t !&p

5d~t2t8!dt
^Xs,i~ t !Xr , j~ t !&p

P
,

3Strictly speaking,si(t) is drawn from the distribution in Eq.~1!
and not fromps,i of Eq. ~8!. However, these two distributions diffe
by a negligible amount as long as the condition~5! holds~see later!.
05613
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where thed(t2t8) comes from independence ofXs,i(t) and
Xr , j (t8) for tÞt8 and the fact thatXs,i(t) are identically
distributed in time leads to the expression in the second l
Now

^Xs,i~ t !Xr , j~ t !&p

P
5

as,iar , j^A
2&p

P
2

as,i^A&p ar , j^A&p

P
.

~11!

The second term always vanishes forN→` because
as,i^A&p is of orderN0 @25#. In the first term, instead,

^A2um&p5N1 (
kÞ l 51

N

(
s8,r 8

as8,k
m ar 8,l

m ps8,kp r 8,l ~12!

is of orderN, which then gives a positive contribution in Eq
~11! for N→`.

Equation~12! leads to a stochastic dynamics where t
noise covariance depends on the stochastic variablesus,i(t)
themselves. The complications that result from this fact c
be avoided if one takes the approximation

^A2um&p'^A2&[s2. ~13!

This approximation can be justified naively by observing th
the dependence onps,i of the correlations only involves the
global quantitŷ A2um&p /P for which one expects some so
of self-averaging properties. Numerical results suggest
terms that are ignored by Eq.~13! are negligible forN@1,
but we were unable to prove this in general@26#.

Within this approximation the correlation, forN@1 be-
comes

^dWs,i~t!dWr , j~t8!&>
s2

aN
as,iar , jd~t2t8!dt. ~14!

Note that, for rÞs or j Þ i , correlations
^dWs,i(t)dWr , j (t8)&}as,iar , j;1/AN vanish as N→`.
However, it is important to keep the off-diagonal terms b
cause they keep the dynamics of the phase space p
uU(t)&5$Us,i(t)%s51, . . . ,S, i 51, . . . ,N constrained to the linea
space spanned by the vectors uam&
5$as,i

m %s51, . . . ,S, i 51, . . . ,N , which contains the initial condi-
tion uU(0)&. The original dynamics ofUs,i(t) indeed posses
this property.

It is important to remark that the approximation~13!
makes our approach a self-consistent theory fors2. We in-
troduces2 as a constant in Eq.~13!, which then has to be
computed self-consistently from the dynamic equations.

Summarizing, the dynamics ofus,i is described by a con
tinuum time Langevin equation,

dus,i~t!

dt
52as,i^A&1hs,i~t!, ~15!

^hs,i~t!&50, ~16!
8-3
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MATTEO MARSILI AND DAMIEN CHALLET PHYSICAL REVIEW E 64 056138
^hs,i~t!h r , j~t8!&>
s2

aN
as,iar , jd~t2t8!. ~17!

Equation~15!, given its derivation, has to be interprete
in the Ito sense. The expression for the noise strengt
confirmed by Fig. 1, where the measure ofX
5(i,ŝ (Xi,s

2 &/(PNS) in a MG is reported; note that these n
merical simulations were done forG5` and confirm Eq.
~17! is valid even fora,ac . Figure 2 compares the resul
of numerical simulations of the MG, as a function ofG, with
those of a semianalytic solution of Eqs.~15!–~17!, to be
discussed later. The agreement of the two approaches s
that Eqs.~15!–~17! are valid even in the symmetric phas
(a<ac) for all values ofG.

The instantaneous probability distribution ofs, in the con-
tinuum time limit, reads

ps,i~t!5
eG i us,i (t)

(
r

eG i ur ,i (t)

. ~18!

This and Ito calculus then lead to a dynamic equation
ps,i(t). We prefer to exhibit this forG i5G and using the
rescaled timet5Gt,

dps,i

dt
52ps,i@as,i^A&2pW i•aW i^A&#1

s2G

aN
ps,i~ps,i2pW i

2!

1AGps,i~hs,i2pW ihW i !. ~19!

The first term in the right-hand side comes from the de
ministic part of Eq.~15!, the second from the Ito term~where
we neglected terms proportional toai ,sai ,s8;1/AN for s
Þs8), and the third from the stochastic part. It is clear th
in the limit G→0 the last two terms vanish and the dynam
becomes deterministic.

FIG. 1. Noise strength averaged over all agents~stars!; when it
is multiplied by a ~diamonds!, one recoverss2/N ~circles! (P
532, S52, 300P iterations, G5`, average over 50 samples!.
Dashed lines are for eye guidance only.
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We see then thatG tunes the strength of stochastic flu
tuations in much the same way as temperature does for t
mal fluctuations in statistical mechanics. The ‘‘individual i
verse temperature’’G should indeed more correctly b
interpreted as a learning rate.4 Furthermore, it plays the role
of a ‘‘global temperature.’’ We shall pursue this discussi
in detail below for the caseS52.

At this point, let us comment on the limitG→`, which is
of particular importance since it corresponds to the origi
MG. It is clear that in the limitG→` the dynamical Eqs.
~19! become problematic. The origin of the problem lies
the order in which the limitsN→` andG→` is performed.
Indeed in Eq.~8! Us,i(t).us,i(t)1O(dt) for Pt<t,P(t
1dt). Therefore, as long asGdt!1 the difference between
Eq. ~8! andps,i in Eq. ~18! is negligible. In practice, in orde
to satisfy bothGdt!1 andPdt@1, one needsG!P. When
this condition is not satisfied the instantaneous probab
~1! fluctuates very rapidly at each time step. Equation~8!
averages out these high-frequency fluctuations so that, e
for G5`, the distributionps,i(t) of Eq. ~8! is not a discon-
tinuous step function ofus,i(t), as suggested by Eq.~18!.
High-frequency fluctuations contribute to the functional for
of ps,i on us,i , which will differ from Eq. ~18!.

Summarizing, when we letG→` only after the limitN
→` has been taken, no problem arises. There is no reaso

4This is ana posteriori learning rate. Indeed 1/G is the time the
dynamics of the scores needs in order to learn a payoff differe
From a different viewpoint,G tunes the randomness of the respon
of agents. The larger the randomness, the longer it takes to ave
fluctuations out.

FIG. 2. Global efficiencys2/N versusG for a50.1,ac and
different system sizes. Lines refer to direct simulations of the M
with N5160, 320, and 640. Finite size effect forG@1 are evident.
Symbols refer instead to the solution of the self-consistent equa
~36! for the same system sizes. For both methods and all value
N, s2 is averaged over 100 realizations of the disorder. The ar
marks the location ofGc predicted by Eq.~34!. In the inset, the
theoretical prediction, Eq.~37!, on the leading behavior ofs2/N for
G!1 ~solid line! is tested against numerical simulations of the M
~points! for the same values ofN.
8-4
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believe that results change if the order of the limits is int
changed. This expectation, as we shall see, is confirme
numerical simulations~see Fig. 2!: direct numerical simula-
tions of the MG deviate from the prediction of Eqs.~15!–
~17! only for finite size effects that vanish asN→`.

Equations~15!–~17! are our central result. We shall de
vote the rest of the paper to discuss their content and to s
that all of the observed behavior of the MG can be deriv
from these equations.

IV. STATIONARY STATE

Let us take the average, denoted by^•••&, of Eq. ~15! on
the stationary state~SS!. Let

f s,i5^ps,i&

be the frequency with which agenti plays strategys in the
SS. Then we have

vs,i[ K dus,i

dt L 52as,i^A&, ^Aum&5(
j ,s8

f s8, jas8, j
m .

Given the relation betweenps,i andus,i and considering tha
the long-time dynamics ofus,i in the SS isus,i(t)5const
1vs,it, we have that~i! each strategy that is played in the S
by agenti must have the same ‘‘velocity’’vs,i5v i* and ~ii !
strategies that are not played~i.e., with f s,i50) must have
vs,i,v i* . In other words

2as,i^A&5v i* ; i ,s such that f s,i.0, ~20!

2as,i^A&<v i* ; i ,s such that f s,i50. ~21!

Consider now the problem of constrained minimization ofH
in Eq. ~4!, subject tof s,i>0 for all s,i and the normalization
conditions. Introducing Lagrange multipliersl i to enforce
(sf s,i51 for all i, this problem reads

min
$ f s,i>0%

H ^A&22(
i 51

N

l iS 12(
s51

S

f s,i D J . ~22!

Taking derivatives, we find that iff s,i.0 thenas,i^A&1l i

50 whereas iff s,i50 then as,i^A&1l i>0. These are ex-
actly Eqs.~20! and ~21! wherev i* 5l i . We then conclude
that the two problems, Eqs.~20! and ~21! and Eq.~22! are
one and the same problem.5 In other wordsf s,i can be com-
puted from the constrained minimization ofH as proposed in
Refs.@3,4#.

5Indeed both problems can be put in the form of a linear comp
mentarity problem@27#,

fs,i>0,

(
j ,s8

as,ias8, j f s8, j1v i* >0,

f s,iF(
j ,s8

as,ias8, j f s8, j1v i* G50.

This problem has a solution for all values ofv i* because of non-
negativity of the matrixas,ias8, j , see Ref.@27#.
05613
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Hence the statistical mechanics approach based on
study of the ground state ofH is correct. This approach give
the frequencyf s,i with which agents play their strategies.

We remark once more thatH is a function of the station-
ary state probabilitiesf s,i . Also note that

H̃$ps,i%5 (
i , j 51

N

(
s,s851

S

as,ias8, jps,ips8, j

as a function of the instantaneous probabilitiesps,i is not a
Lyapunov function of the dynamics. The dynamical va
ablesps,i(t) are subject to stochastic fluctuations of the o

der ofAG i around their average valuesf s,i . Only in the limit
G i→0, when the dynamics becomes deterministic andps,i

→ f s,i , the quantityH̃$ps,i% becomes a Lyapunov function
The solution to the minimization ofH reveals two quali-

tatively distinct phases@3,4# that are separated by a pha
transition occurring asa→ac . We discuss qualitatively the
behavior of the solution for a genericSand leave for the nex
section a more detailed discussion in the simpler caseS52.

A. Independence onG for aÌac

When a.ac the solution to Eq.~22! is unique andH
.0. Hencef s,i does not depend onG, neither doesH. In
addition we shall see that

^ps,ips8, j&5^ps,i&^ps8, j&5 f s,i f s8, j for iÞ j , ~23!

implying that

s2[N1(
iÞ j

(
s,r

as,iar , j^ps,ip r , j&

does not depend onG either. Hence the solution$ f s,i%
uniquely determines all quantities in the SS, as well as
parameters that enter into the dynamics@notice the depen-
dence ons2 in Eq. ~17!#. In particular,s2 does not depend
on G.

B. Dependence onG and on initial conditions for aËac

For a,ac the solution to the minimization problem is no
unique: there is a connected set of points$ f s,i% such thatH
50. Let us first discuss the behavior of the system in
limit G→0, where the dynamics becomes deterministic. T
dynamics reaches a stationary state$ f s,i% that depends on the
initial conditions.

In order to see this, let us introduce the vector notat
uv&5$vs,i ,s51, . . . ,S, i 51, . . . ,N%. Then for all times
uu(t)& is of the form

uu~t!&5uu~0!&1 (
m51

P

uam&Cm~t!,

whereCm(t) areP functions of time.
If there are vectorŝvu such that̂ vuam&50 for all m, then

^vuu(t)&5^vuu(0)&, i.e., the components of the scores w
not change at all along these vectors. As a result the SS

-

8-5
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MATTEO MARSILI AND DAMIEN CHALLET PHYSICAL REVIEW E 64 056138
depend on initial conditionsuu(0)&. These vectorŝvu exist
exactly fora,ac @4#, because the ‘‘dimensionality’’ of the
vectorsuu(t)& is larger thanP.6

The picture is made even more complex by the fact t
for a,ac , whenG is finite, Eq.~23! does not hold. Hence
s2 has a contribution, which depends on the stochastic fl
tuations aroundf s,i . The strength of these fluctuations, give
by Eqs.~17! and~19!, depends onG ands2 itself. We face,
in this case, a self-consistent problem:s2 enters as a param
eter of the dynamics but should be computed in the stat
ary state of the dynamics itself. Therefore, the solution
this problem and hences2 depends onG. The solution$ f s,i%
to the minimization ofH should also be computed sel
consistently. As a result, the SS properties acquire a de
dence onG.

The condition ~23!, which is similar to theclustering
property in spin glasses@28#, plays then a crucial role. We
show below how the condition~23!, the dependence on ini
tial conditions, and onG enter into the detailed solution fo
S52. By similar arguments our conclusion can be gene
ized to allS.2.

V. THE CASE SÄ2

We work in this section with the simpler case ofS52
strategies, labeled bys56. We also setG i5G for all i.
Following Refs.@3,13# we introduce the variables

j i
m5

a1,i
m 2a2,i

m

2
, Vm5(

i 51

N a1,i
m 1a2,i

m

2
.

Let us rescale timet5Gt and introduce the variables

yi~ t !5G
u1,i~t!2u2,i~t!

2
.

Then, using Eq.~8!, the dynamical equations~15!–~17! be-
come

dyi

dt
52j iV2(

j 51

N

j ij j tanh~yj !1z i , ~24!

^z i~ t !z j~ t8!&5
Gs2

aN
j ij jd~ t2t8!. ~25!

The Fokker-Planck~FP! equation for the probability dis
tribution P($yi%,t) under this dynamics reads

6In order to compute the dimensionality of the vectorsuu& we
have to take into account theN normalization conditions and th
fact that strategies that are not played (f s,i50) should not be
counted. So if there areN. variablesf s,i.0, the relevant dimen-
sion of the space ofuu& is N.2N. Hence vectorŝvu orthogonal to
all uam& exist for N.2N.P, i.e., for a,ac5N.(ac)/N21.
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]P~$yi%,t !

]t
5(

i 51

N
]

]yi
H j iV1(

j 51

N

j ij j tanh~yj !

1
1

b (
j 51

N

j ij j

]

]yj
J P~$yi%,t !, ~26!

where we have introduced the parameter

b5
2aN

Gs2
. ~27!

Multiply Eq. ~26! by yi and integrate over all variables. Us
ing integration by parts, assuming thatP→0 fast asyj→`,
one gets

]

]t
^yi&52j iV2(

j 51

N

j ij j^tanh~yj !&.

Let us look for solutions witĥ yi&;v i t and definemi
5^tanh(yi)&. Hence fort→` we have

v i52j iV2(
j 51

N

j ij jmj . ~28!

Now, eitherv i50 and^yi& is finite or v iÞ0, which means
that yi→6` andmi5sgnv i . In the latter case (v iÞ0) we
say that agenti is frozen @13#, we call F the set of frozen
agents andf5uFu/N the fraction of frozen agents.

As in the general case, the parametersv i for i PF and
mi[^tanh(yi)& for i P” F are obtained by solving the con
strained minimization of

H5
1

P (
m51

P FVm1(
i 51

N

j i
mmi G2

.

When the solution of minH is unique, i.e., fora.ac , the
parametersmi depend only on the realization of disord
$j i

m ,Vm%, and their distribution can be computed as in R
@3#. When the solution is not unique, i.e., fora,ac , we are
left with the problem of finding which solution the dynamic
selects. Let us suppose that we have solved this problem~we
shall come back later to this issue! so that allmi are known.

Using the stationary condition Eq.~28!, we can write the
FP equation for the probability distributionPu(yi ,i P” F) of
unfrozen agents. For times so large that all agents inF are
indeed frozen@i.e., si(t)5sgnv i# this reads

]Pu

]t
5(

i P” F

]

]yi
(
j P” F

j ij j H tanh~yj !2mj1
1

b

]

]yj
J Pu .

This has a solution

Pu} expH 2b (
j P” F

@ ln coshyj2mjyj #J . ~29!
8-6
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Finally we have to impose the constraint thatuy(t)&
5$yi(t)% i 51

N must lie on the linear space spanned by
vectors ujm&, which contains the initial conditionuy(0)&.
This means that

Pu}Py(0)expH 2b (
j P” F

@ ln coshyj2mjyj #J , ~30!

where the projectorPy(0) is given by

Py(0)[ )
m51

P E
2`

`

dcm)
i 51

N

dF yi2yi~0!2 (
m51

P

cmj i
mG .

~31!

We find it remarkable thatG, which is introduced as the
inverse of anindividual ‘‘temperature’’ in the definition of
the model, actually turns out to be proportional tob21 @see
Eq. ~27!#, which playscollectivelya role quite similar to that
of temperature.

Using the distribution Eq.~30!, we can compute

s25H1(
i 51

N

j i
2~12mi

2!1(
iÞ j

j ij j^~ tanhyi2mi !

3~ tanhyj2mj !&. ~32!

This depends onb, i.e., ons2 itself by virtue of Eq.~27!.
The stationary state is then the solution of a self-consis
problem. Let us analyze in detail the solution of this se
consistent problem.

A. aÌac

For a.ac the solution of minH is unique, and hencemi
depends only on the realization of the disorder. In additi
the numberN2uFu[N(12f) of unfrozen agents is les
than P and the constraint is ineffective, i.e.,Py(0)[1. The
scoresuy& of unfrozen agents span a linear space, which
embedded in the one spanned by the vectorsujm&. Hence the
dependence on initial conditionsyi(0) drops out. Therefore
the probability distribution ofyi factorizes as in Eq.~29!.
Then the third term of Eq.~32!, which is the only one tha
depends onb, vanishes identically. We conclude that, f
a.ac , s2 only depends onmi and is hence independent o
G as confirmed by numerical simulations.

Summarizing, fora.ac one derives a complete solutio
of the MG by finding first the minimum$mi% of H and then
by computings2, b, and the full distribution ofyi from Eq.
~29!.

B. aÏac : Dependence onG and crowd effects

Whena,12f, on the other hand, the solution of minH
is not unique. Furthermore, the constraint cannot be in
grated out and the stationary distribution depends on the
tial conditions.

Numerical simulations@8# show thats2 increases withG
for a,ac ~see Fig. 2!. This effect has been related to crow
effects in financial markets@12#. References@6# has shown
that crowd effects can be fully understood in the limita
05613
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→0: as G exceeds a critical learning rateGc , the time-
independent SS becomes unstable and abifurcation to a
period-2 orbit occurs. Neglecting the stochastic termz i , Ref.
@6# shows that this picture can be extended toa.0.7 This
approach suggests a crossover to a ‘‘turbulent’’ dynamics
G.Gc , where

Gc~a!5
4

~11Aa!2~12Q!
~34!

and

Q5
1

N (
i 51

N

mi
2 .

Both Q and Gc can be computed exactly in the limitN
→` within the statistical mechanics approach@3,6#.

This approach however~i! does not properly takes into
account the stochastic term,~ii ! does not explain what hap
pens forG.Gc , and (iii) does not explain why such effec
occur only fora,ac .

The stochastic dynamics derived previously gives deta
answers to all these issues. We first restrict attention to s
metric initial conditionsyi(0)50 and then discuss the de
pendence on initial conditions. The choice ofyi(0)50; i is
convenient because it allows one to use this same symm
to identify the solution$mi% to the minimization ofH, inde-
pendently ofG. To be more precise, one can introduce
‘‘magnetization’’

M[ lim
t→`

1

N (
i 51

N

^si~ t !si~0!&5
1

N (
i 51

N

mi , ~35!

which measures the overlap of the SS configuration with
initial condition. Symmetric initial conditions are related
M50 SS. These are the states we focus on. The solutio
derived in two steps:~1! find the minimum$mi% of H with
M50, ~2! compute self-consistentlys2. The numerical pro-

7The idea of Ref.@6# is the following: imagine that our system i
close to a SS pointyi* at time t5tk , when m(t)51. Will the
system be close toyi* when the patternm51 occurs again the nex
time t85tk11? To see this, let us integrate Eq.~24! from t5tk to
tk11. In doing this we~i! neglect the noise term~i.e.,z i50) and~ii !
assume that tanhyi(t)'tanhyi(tk) stays constant in the integratio
time interval. This latter assumption is similar to the recently int
duced@7# batch version of the MG, where agents update their st
egies everyP time steps. This leads to the study of a discrete ti
dynamical system

yi~tk11!5yi~tk!2GHVji1(
j51

N

jijjtanh@yj~tk!#J, ~33!

where the factorG comes becausetk112tk is on average equal to
G. The linear stability of fixed point solutions is analyzed setti
yi(tk)5yi* 1dyi(k) and computing the eigenvalues of the linea
ized mapdyi(k11).( jTi , jdyj (k). There is a critical value ofG
above which the solutionyi* become unstable, which is given b
Eq. ~34!.
8-7
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cedure for solving the problem is the following: given th
realization of disorder$j i

m ,Vm%, step~1!—finding the mini-
mum $mi% of H—is straightforward. For step~2! we sample
the distribution~30! with the Monte Carlo method8 at inverse
temperatureb and measure theb-dependent contribution o
s2 in Eq. ~32!,

S~b!5(
iÞ j

j ij j^~ tanhyi2mi !~ tanhyj2mj !&b .

Here^•••&b stands for an average over the distribution~30!
with parameterb. Finally we solve the equation

s2~G!5s2~0!1SF 2aN

Gs2~G!
G . ~36!

This procedure was carried out for different system si
and several values ofG. The results, shown in Fig. 2, agre
perfectly well with direct numerical simulations of the MG
Actually Fig. 2 shows that, forG@1, the solution of the
self-consistent equation~36! suffers much lesser finite siz
effects than the direct numerical simulations of the MG. F
ure 2 also shows that, even if only approximate, Eq.~34!
provides an useful estimate of the point where the crosso
occurs.

It is possible to computes2(G) to leading order inG
!1. The calculation is carried out in Appendix B in deta
The result is

s2

N
>

12Q

2 F11
12Q1a~123Q!

4a
G1O~G2!G . ~37!

The inset of Fig. 2 shows that this expression indeed rep
duces quite accurately the smallG behavior ofs2. Note fi-
nally that Eq. ~36! has a finite solutions2(`)5s2(0)
1S(0) in the limit G→`. Furthermore, it is easy to unde
stand the origin of the behaviors2/N;1/a for Eq. ~36!.
Because of the constraint, whenj ij j is positive ~negative!
the fluctuations of tanh(yi)2mi are positively ~negatively!
correlated with tanh(yj)2mj . If we assume that̂ @ tanh(yi)
2mi ] @ tanh(yj)2mj#&.cjijj for some constantc, we find S
.c( iÞ jj ij j

2. This leads easily toS/N.c/(4a), which ex-
plains the divergence ofs2/N asa→0 for G@1.

8The Monte Carlo procedure follows the usual basic steps:~i! A
moveyi→yi1ej i

m is proposed withm ande drawn at random,~ii !
the ‘‘energy’’

E$yi%5(
i51

N

@ln coshyi2miyi#

of the new configuration is computed, and~iii ! the move is accepted
with a probability equal to min(1,e2bDE), whereDE is the ‘‘en-
ergy’’ difference.
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C. Selection of different initial conditions in the replica
calculation

As discussed above, the stationary state properties of
MG in the symmetric phase depend on the initial conditio
Can the statistical mechanics approach to the MG@3,4# be
extended to characterize this dependence forG!1? If this is
possible, how do we expect the resulting picture to cha
whenG increases? We shall first focus on the first quest
~i.e., G!1) and then discuss the second.

Of course one can introduce the constraint on the dis
bution ofyi in the replica approach in a straightforward ma
ner. This leads, however, to tedious calculations. We pre
to follow a different approach. In thea,ac phase the mini-
mum ofH is degenerate, i.e.,H50 occurs on a connected s
of points. Each of these points corresponds to a different
of initial conditions, as discussed above. In order to sele
particular point withH50 we can add a potentialh( i(si

2si* )2/2 to the HamiltonianH, which will favor the solu-
tions closer tosi* , and then let the strengthh of the potential
go to zero. This procedure lifts the degeneracy and gives
the statistical features of the equilibrium close tosi* .

The nature of the stationary state changes as the asym
try in the initial conditions changes. If we takesi* 5s* , the
state ats* 50 describes symmetric initial conditions and i
creasings* .0 gives asymmetric states.

The saddle point equations of the statistical mechan
approach of Ref.@3# can be reduced to two equations,

Q5E
2`

`

Dzs0
2~z!, ~38!

x5
11x

Aa~11Q!
E

2`

`

Dzzs0~z!, ~39!

whereDz5(dz/A2p)e2z2/2, s0(z)P@21,1# is the value of
s that minimizes

Vz~s!5
1

2
s22A11Q

a
zs1

1

2
h~11x!~s2s* !2, ~40!

andx5b(Q2q)/a is a ‘‘spin susceptibility.’’ There are two
possible solutions. One withx,` finite as h→0, which
describes thea.ac phase. The other hasx;1/h, which
diverges ash→0. This solution describes thea,ac phase.
We focus on this second solution, which can be convenie
parametrized by two parametersz0 ande0. We find

s0~z!5H 21 if z<2z02e0

z1e0

z0
if 2z02e0,z,z02e0

1 if z>z02e0

Indeed Eq.~38! gives Q(z0 ,e0) and Eq.~39!, which for x

→` readsAa(11Q)5*Dzzs0(z), then givesa(z0 ,e0).
With e0Þ0 one finds solutions with a nonzero ‘‘magn

tization’’ M5^si&. This quantity is particularly meaningful
8-8
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in this context, because it measures the overlap of the be
ior of agents in the SS with theira priori preferred strategies

M[E
2`

`

Dz s0~z!5 lim
t→`

1

N (
i 51

N

^si~ t !si~0!&. ~41!

Note indeed that one can always perform a ‘‘gauge’’ tra
formation in order to redefines511 as the initially pre-
ferred strategy. This amounts to takingyi(0)>0 for all i.

Which SS is reached from a particular initial condition
of course, a quite complex issue that requires the integra
of the dynamics. However, the relation betweenQ and M
derived analytically from Eqs.~38! and ~41! can easily be
checked by numerical simulations of the MG. Figure
shows that the self-overlapQ and the magnetizationM com-
puted in numerical simulations with initial conditionsyi(0)
5y0 for all i, perfectly match the analytic results. The ins
of this figure shows how the final magnetizationM and the
self-overlapQ in the SS depend on the asymmetryy0 of
initial conditions.

Let us finally discuss the dependence onG for asymmetric
initial conditions. Equation~34! provides a characteristi
value ofG as a function ofa andQ. This theoretical predic-
tion is tested against numerical simulations of the MG in F
4: when plotted againstG/Gc , the curves ofs2/N obtained
from numerical simulations approximately collapse one o
the other in the largeG region. Figure 4 suggests thatGc in
Eq. ~34! provides a close lower bound for the onset of sa
ration to a constants2 for largeG. We find it remarkable tha
a formula such as Eq.~34!, which is computed in the limit
G→0, is able to predict the largeG behavior.

With respect to the dependence on initial conditions,
observe thatGc is an increasing function ofQ and hence it
increases with the asymmetryy0 of initial conditions. Hence,
for a fixed G, the fluctuation-dependent partS of s2 de-

FIG. 3. Relation betweenQ and M, for a50.1, derived from
analytic calculation~full line! and from numerical simulations o
the MG with different initial conditionsy0 (L:P532,N5320,G
50.1). The inset shows the dependence ofQ andM on the initial
conditiony0.
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creases withy0 because it is an increasing function ofG/Gc .
This effect adds up to the decrease of theG-independent part
of s2 discussed previously.

Figure 4 also shows that theG@Gc state is independent o
initial conditionsy0. This can naively be understood obser
ing that stochastic fluctuations induce fluctuationsdyi that
increase withG. For G@1 the asymmetryy0 of initial con-
ditions is small compared to stochastic fluctuationsdyi and
hence the system behaves as ify0'0.

D. The maximally magnetized stationary state

The maximally magnetized SS~MMSS!, obtained in the
limit y0→`, is also the one with the largest value ofQ, and
hence with the smallest value ofs25N(12Q)/2. s2/N is
plotted againsta both for symmetricy050 initial conditions
and for maximally asymmetric onesy0→` in Fig. 5. The
inset shows the behavior ofQ andM in the MMSS.

Remarkably we find thats2/N vanishes linearly witha in
the MMSS.9 This means that, at fixedP, asN increases the
fluctuations2 remains constant. This is in contrast with wh
happens in they050 state forG!Gc , wheres2 increases
linearly with N, and with the caseG@Gc , where s2}N2

@18,6#. Note also that the lowest curve of Fig. 5 also gives
upper bound to thes2 of Nash equilibria~see Refs.@3,4,29#!.

The MMSS is also the most stable state against cro
effects: if we putQ(a,y05`)>12ca, as appropriate for
the MMSS, we find thatGc;1/a diverges witha.

VI. CONCLUSIONS

We have clarified the correct derivation of continuo
time dynamics for the MG. This on the one hand reconci
the two current approaches@3,9#. On the other it leads to a

9This result was also found analytically in@7#

FIG. 4. Global efficiencys2/N versusG/Gc for a50.1,ac ,
N5160 agents, and different initial conditionsy0. The valueGc is
computed from Eq.~34! and is shown in the legend.
8-9
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MATTEO MARSILI AND DAMIEN CHALLET PHYSICAL REVIEW E 64 056138
complete understanding of the collective behavior of
MG. We confirm that stationary states are characterized
the minimum of a Hamiltonian, which measures the pred
ability of the game. Fora.ac we find a complete analytic
solution, whereas fora,ac the statistical mechanics ap
proach of Ref.@3# is valid for G→0. It is, in principle, pos-
sible to introduce the new elements discussed here in
approach of Ref.@3# and to derive a full analytic solution
We have indeed derived the first term of the series expan
for G!1, which agrees perfectly with numerical data. T
extension of the approach of Ref.@3# involves lengthy cal-
culations and it shall be pursued elsewhere.

Finally we note that the results derived in this paper g
eralize to more complex models. It is worth remarking th
the solution to the FP equation is no more factorizable
general, when agents account for their market impact a
Refs.@3,6,4#. Hence, as long as there are unfrozen agents
expect that the stationary state depends onG. However,
when the agents take fully into account their market impa
all of them are frozen and the conclusion that agents c
verge to Nash equilibria remains valid.
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APPENDIX A: NONLINEAR MINORITY GAMES

Take a generic dynamics

Us,i~ t11!5Us,i~ t !2as,i
m(t)g@A~ t !#,

whereg(x) is some function. When we carry out the limit t
continuous time we find a deterministic term, which is pr
portional to 2as,i^g(A)&. The stationary state condition
then read

FIG. 5. s2/N for the MG with initial conditionsy050 ~full line!
andy0→` ~dashed line!. The inset reports the behavior ofM andQ
in the y0→` SS. Note thatQ is linear ina.
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v i52as,i^g~A!& if f s,i.0

and

v i.2as,i^g~A!& if f s,i50.

For any fixedm, A(t) is well approximated by a Gaussia
variable with mean

^Aum&5(
i ,s

f s,ias,i
m

and varianceD5s22H. Here we neglect dependences
m. Also we treatD as a parameter and neglect its depende
on the stationary state probabilitiesf s,i . Hence we can write

^g~A!um&5E
2`

` dx

A2p
e2x2/2g~^Aum&1ADx!.

The stationary state conditions of the dynamics above
again be written as a minimization problem of the function

Hg5
1

P (
m51

P E
2`

` dx

A2p
e2x2/2GS (

i ,s
f s,ias,i

m 1ADxD
with

g~x!5
dG~x!

dx

andD5s22H, which must be determined self-consistent
Indeed taking the derivative ofHg with respect tof s,i and

imposing the constraintf s,i>0 and normalization, we arrive
at exactly the same equations that describe the statio
state of the process.

The Hamiltonian for the original MG is derived settin
g(x)5sgnx, which leads to

Hsign5
1

P (
m51

P F 1

Ap
e2^Aum&2/D1

^Aum&

AD
erfS ^Aum&

AD
D G .

The analysis of stochastic fluctuations can be extende
nonlinear cases in a straightforward manner. Again the
point is that the dynamics is constrained to the linear sp
spanned by the vectorsuam&. For a.ac we have no depen
dence on initial conditions. However, it is not easy to sho
in general, that the distribution of scores factorizes acr
agents. This means that there may be a contribution of fl
tuations tos2—i.e., S.0—so we cannot rule out a depen
dence ofs2 on G. Numerical simulations forg(x)5sgnx
show that such a dependence, if it exists, is very weak. A
way even thoughs2 only depends onf s,i , the minimization
problem depends onD5s22H, which must then be deter
mined self-consistently.

For a,ac the dependence on initial conditions induces
correlation of scores across agents. As a results2 depends
on G just as in the linear case discussed above.
8-10
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APPENDIX B: SMALL G EXPANSION

For G!1 it is appropriate to considerb@1 and to take

yi5arc tanhmi1
zi

Ab

so thatb@ ln coshyi2miyi#.
1
2(12mi

2)zi
21O(b21/2). Hence we

have to sample a distribution

P$zi%}expF2
1

2 (
i

~12mi
2!zi

2G ,
wherezi has the form

zi5 (
m51

P

cmj i
m .

It is convenient to express everything in terms of the coe
cientscm. Their pair distribution function~PDF! is derived
from that ofzi and it reads

P$cm%}expF2
1

2 (
m,n

cmTm,ncnG ,
Tm,n5(

i 51

N

~12mi
2!j i

mj i
n .

From this we find̂ cmcn&5@T21#m,n.
Now we split the termS(b) into two contributions,

S~b!5K F(
i 51

N

j i~ tanhyi2mi !G2L 1(
i 51

N

j i
2@mi

22~ tanhyi !
2#,
ch

to

to

05613
-

and work them out separately. For the first we use

(
i 51

N

j i
m~ tanhyi2mi !5

1

Ab
(

n
Tm,ncn

so that

K F(
i 51

N

j i~ tanhyi2mi !G2L 5
1

bP (
m,n,g

Tm,nTm,g^cncg&

5
Tr T

bP
>

12Q

2b
N.

Within the approximation (123mi
2)'(123Q) we are

able to derive a closed expression also for the second te

(
i 51

N

j i
2@mi

22~ tanhyi !
2#5

1

b (
i 51

N

j i
2~12mi

2!~123mi
2!^zi

2&

'
a

b

123Q

2
N.

Hence we find

S~b!>F12Q

2
1

123Q

2
a G 1

b
1O~b22!.

This equation and Eq.~27! lead to Eq.~37!.
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